Home Page Matter Atoms Elements Reactions Biochemistry Activities Chem4kids Sections Search
Elements and Periodic Table


Transition metals in the periodic table Let's start off by telling you that there are a lot of elements that are considered transition metals. Which metals are the transition metals?
21 (Scandium) through 29 (Copper)
39 (Yttrium) through 47 (Silver)
57 (Lanthanum) through 79 (Gold)
89 (Actinium) and all higher numbers.

What Makes Them So Special?

It all has to do with their shells/orbitals. We like introducing students to the first eighteen elements, because they are easier to explain. Transition metals are good examples of advanced shell and orbital ideas. They have a lot of electrons and distribute them in different ways. You will usually find that transition metals are shiny, too. Not all of them, but we are sure you've seen pictures of silver (Ag), gold (Au), and platinum (Pt).

Number of electrons allowed in the orbitals of transition metals. Transition metals are able to put more than eight electrons in the shell that is one in from the outermost shell. Think about argon (Ar). It has 18 electrons set up in a 2-8-8 order. Scandium (Sc) is only 3 spots away with 21 electrons, but it has a configuration of 2-8-9-2. Wow! This is where it starts. This is the point in the periodic table where you can place more than 8 electrons in a shell. You need to remember that those electrons are added to the second-to-last shells.

The transition metals are able to put up to 32 electrons in their second-to-last shell. Something like gold (Au), with an atomic number of 79, has an organization of 2-8-18-32-18-1. Of course, there are still some rules. No shell can have more than 32 electrons. You will find it's usually 2, 8, 18 or 32 for the maximum number of electrons in an orbital.

One More Thing

Silver is a precious transition metal. Most elements can only use electrons from their outer orbital to bond with other elements. Transition metals can use the two outermost shells/orbitals to bond with other elements. It's a chemical trait that allows them to bond with many elements in a variety of shapes. Why can they do that? As you learn more, you will discover that most transition elements actually have two shells that are not happy. Whenever you have a shell that is not happy, the electrons want to bond with other elements. Example: Molybdenum (Mo), with 42 electrons. The configuration is 2-8-18-13-1. The shells with 13 and 1 are not happy. Those two orbitals can use the electrons to bond with other atoms.

Next Stop On Chem4Kids Tour
Next Page on Elements

- Overview
- Periodic Table
- Element List
- Families
- Halogens
- Noble Gases
- Metals
- Alkali Metals
- Alkaline Earth
> Transition Metals
- Lanthanide
- Actinide


Link to Link to Link to Link to Link to Link to Rader Network Side Navigation


Science Nation: Silver Saver (US-NSF Video)
- or -

Elements Quiz

Periodic Table Quiz

Useful Reference Materials (Transition Elements):
Encyclopædia Britannica:
Encyclopædia Britannica (Rare Earth Elements):
Books on
- Prentice Hall Chemistry (Wilbraham)
- Chemistry (McMurry)
- Chemistry: The Molecular Nature of Matter and Change (Silberberg)
- Books About the Periodic Table
- Introductory Chemistry: A Foundation (Zumdahl)

- Chem4Kids: Lanthanide Elements
- Biology4Kids: Scientific Method
- Geography4Kids: Element Cycles
- Geography4Kids: Biosphere
- Cosmos4Kids: Star Formation
- Physics4Kids: Radioactivity

Search for more information...

* The custom search only looks at Rader's sites.

Help Page Go for site help or a list of chemistry topics at the site map!
©copyright 1997-2015 Andrew Rader Studios, All rights reserved.
Current Page: | Elements and the Periodic Table | Transition Metals

** Andrew Rader Studios does not monitor or review the content available at external web sites. They are paid advertisements and neither partners nor recommended web sites. Specific links for books on are only suggested starting points for further research. Please browse, research options, and choose the appropriate materials for your needs.